If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=135
We move all terms to the left:
2x^2+10x-(135)=0
a = 2; b = 10; c = -135;
Δ = b2-4ac
Δ = 102-4·2·(-135)
Δ = 1180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1180}=\sqrt{4*295}=\sqrt{4}*\sqrt{295}=2\sqrt{295}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{295}}{2*2}=\frac{-10-2\sqrt{295}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{295}}{2*2}=\frac{-10+2\sqrt{295}}{4} $
| 2x^2+8x=-10 | | x/3=5.7 | | 36+m=54 | | 4/3x-13=x-9 | | 4x=52.8 | | 9x-2=4x+36=5x+20 | | 8x-5+4x+9=-8 | | 8/x+3=12 | | x+122=12 | | 11-6x+3=2 | | –2(m–30)=–6 | | -9x+6+2x-4=9 | | 3(2x+6)=2(4x-3) | | 2(-6x-3)=12 | | 8x+3-4x-7=-3 | | 80p-80=80 | | 6t-6=24 | | 25q+1=101 | | 4h+4=24 | | 6(x+5)+3*x=3 | | 7/10=x- | | 8x−5=8x−5 | | 7v=12.6 | | 2/3(4x-6)=4 | | 2.25x+20=5x+30 | | 0=240-16t^2 | | .48x=273 | | 10/20+14x/20=13/20 | | -2/8f=0 | | 6(x-5)-3*x=3 | | .48x=5341 | | .48x=5241 |